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1. Phys. A Math. Gen. 26 (1993) 3883-3901. Printed in the UK 

Traces of powers of the Hamiltonian operator in 
finite-dimensional antisymmetric model spaces 
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t Depaltamentde Cikncies Experimentals, Universitat Jaume I, Apartat 224, E-I2080 
Caste114 Spain 
$ hstytut Fiyki. Uniwenytet Mikafaja K o p "  Grudzi+dzka 5, PL 87-1W. T o d ,  Poland 

Received 10 September 1992, in hnal form 29 March 1993 

Abstract. A general method of cvaluatim of  trace^ df arbitmy powers of Hermitian operators 
containing one- and two-body inreractions and defined in a finite-dimensional model space is 
presented The model space is taken as the antisymmetric and spin-adapted part of an N-fold 
Cartesian product of a oneelectron space. Themethod is based on the symmetric group approah 
to &e theory of many-electron systems. 

1. Introduction 

Information on~the discrete'spectra of the Hamiltonian operators describing systems of N 
identical fermions have mainly been derived from studies of projections of these Ope&torS 
onto some model spaces, usually finite-dimensional antisymmetric HilbertUpaces. In the 
case of many-electron systems, the most commonly used model space is that spanned 
by the N-electron antisymmetrized and spin-adapted products of orthonormal spinorbitals 
(Ruedenberg 1971), known also as the full configuration interaction (FCI) space (Paldus 
1976, Duch and Kanuowski 1985. Dnch 1986). From a formal point of view, the spin- 
adapted spaces corresponding to a specific configuration of an atom within the electron-shell 
model theory belong to the same class. The model space of the nuclear-shell theory has a 
very similar shucture. 

TWO different strategies may be applied to study the eigenvalue spectrum of a 
Hamiltonian in a FCI space. In the 6rst one the individual eigenvalues 'are evaluated by 
diagonalizing the Hamiltonian matrix. This approach is most useful when one is interested 
in a few, well characterized energy 1evels;as for example in the case of.studies of electronic 
molecular states. However, it becomes prohibitively inefficient when the number of levels 
is very large, as, for example, in complex atomic or nuclear configurations. In the second 
strategy, global characteristics of the spectra are derived, usually from a knowledge of 
the appropriate distribution moments (Brody ez a1 1981). The set of eigenvalues is here 
mated as a statistical ensemble. Then, the larger is the ensemble, the more precise is the 
treatment. The resulting approach is often referred to as statisrical spectroscopy (French 
1974, French and Kota 1982). Usually in statistical spectroscopy we formulate. different 
questions from those in the conventional one. The statistical.approach is the best suited 
to describe the whole spectrum while the conventional one is best to determine properties 
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of individual eigenvalues. Nevertheless, situations do arise when the statistical approach 
yields results normally associated with the conventional one. For example, the spectral 
distribution function has successfully been applied to predIct locations of individual energy 
levels in both nuclear (Ratcliff 1971) and atomic (Bancewicz and KaMrowski 1987, 1991) 
spectra. 

The statistical specmoscopy originates &om works of Bethe (1936), and of van Lier 
and Uhlenbeck (1937). Early results in this field have been collected by PorIer (1965). 
Applications to nuclear physics have been reviewed by Brody er al (1981). More recent 
conhibutions by Nomura (1985, 1986) should also be mentioned. Reviews of statistical 
studies of atomic spectra have been recently published by Bauehe er a1 (1988), Bauche 
and Bauche-Amoult (1990) and by Karazja (1991). Some applications of the energy level 
density distribution moments in the crystal field theory have been presented by Yeung and 
Newman (1985, 1986). 

Among the basic quantities of the statistical spectroscopy, of particular importance are 
the moments of the spectral density distribution, bemg closely related to traces of powers 
of the Hamiltonian manix (Chang el a1 1971, Nomura 1972, Cowan 1981, Bauche and 
Bauche-Amoult 1990. Karazija 1991). Traces of powers of the Hamiltonian mahices were 
studied by many authors. The earliest works, by Gmocchio (1973) and by Mon and French 
(1975), were concerned with operators represented in nuclear shell model Hilbert spaces. 
More recent contributions by Nomura (1974, 1985, 1986) also address mainly problems in 
nuclear physics. In the atomic smcture theory important contributions are due to Bauche- 
Amoult er 01 (1979, 1982, 1985), Karazija (1989), and Rudzikaite and Karazija (1989). 
In the case of N electrons coupled to a given value of the "I spin, general formulae 
for the fusl two moments of the spectral density distribution were derived Karwowski and 
Bancewicz (1987) using the formalism of spin-adapted reduced Hamiltonians (Kanvowski 
er a1 1986). 

One can mention three different areas of physics in which the moments are useful: 
atomic and nuclear spectroscopy, the reduction problem, and studies on srmcture and 
propenies of the model spaces. 

(i) In spectroscopy most interesting applications are connected with the generation 
of detailed spectra from the moments (Ratcliff 1971, Brody er a1 1981, Bancewicz and 
KaMrowski 1987, 1991) and with deriving envelopes of spectra in mansition arrays from 
the knowledge of moments (Bauche er a1 1988. Bauche-Amoult and Bauche 1992). 

(ii) Reduction of the N-electron problem to an effective two-elecnon problem is one 
of the mosl tantalizing tasks in the theory of atoms and molecules (cf Erdahl and Smith 
1987). The spectral distribution moments of a many-electron system may be expressed 
as linear combinations of products of two-electron integrals determined by a twoelectron 
reduced Hamiltonian. In this expression, the information about speci6c properties of the 
interactions is contained in the integrals, while the dependence upon the number of elecmns 
and their total spin is described by the expansion coefficients known as the propagation 
coeflcienrs. The propagation coefficients may be derived analytically as rational functions 
of N and of the quantum numbers (Brcdy er al 1981, Karazija 1991). In this way the 
specific information about the system, contained in the reduced Hamiltonian, is reshaped, 
depending on the number of electrons and the total spin, by the propagation coefficients 
which are independent of the interaction. 

(ii) The moments are invariants of the transformations of the basis in the model space. 
Therefore they characterize the space and may be used to study its general properties. A 
rather trivial though important application of thii invariance was used by Diercksen er nl 
(1987, 1990) to locate errors in numerically constructed Hamiltonian matrices. Among 
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trivial applications one can mention searching for hidden constants of motion (Rosenzweig 
and Porter 1960, Porter 1965) or determining conditions under which the spectra exhibit 
certain properties, as, for example, the particlehole symmetry (Kanvowski and Bancewicz 
1987). 

In the present paper a general algorithm for the evaluation of traces of arhi!mry powers 
of the N-electron Hamiltonian matrix in a spin-adapted space is derived. The derivation is 
based on the symmetric group approach, in particular on results of recent works by Planelles 
et a1 (1990, 1991). The paper is organized as follows. In the next section some general 
concepts and notations are introduced. In section 3, being the central pan of this paper, 
haces of producu of the second-order reduced density operams s e  analysed and a theorem 
about the repeated indices is presented. A general expression for the uaces of H" and its 
applications to evaluating of moments of the specnal density distributions are discussed in 
the next two sections. In the last two sections simplifications of the general expression 
for the trace of H" resulting from the symmetry properties of the sums of products of the 
two-electron integrals are analysed. As an example of application of the formalism, general 
expressions for mces of H 2  and H 3  are derived. 

2. Definitions and basic properties 

We are concemed with the N-electron Hamiltonian determined in the FCI space 
' H A ( N ,  K, S, M). The XI space is defined as the antisymmetric and spin-adapted part 
of the N-fold tensorial product of a 2K-dimensional one-electron space VZK: 

'HAC" K. S, M) = [V&NIGM (1) 

where A stands for antisymmetry and S, M refer to the total spin operators (S2 and S, 
respectively). The one-electron space is spanned by a set of 2K orthonormal spinorbitals. 
Each spinorbital is a product of a spin function U;, i = 1,2  and an orbital &, k = 
1,2, . . . , K .  The dimension of 7tA is given by the Weyl-Paldus formula (Paldus 1976): 

D(S, N ,  K )  = - , , + I (  K + 1  )( K + 1  ) 
K + l  NJ2-S  N / Z + S + l  

The Hamiltonian may be expressed in 'HA as (Planelles er a[ 1990): 

where 

are generalized two-electron integrals and 
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are the second-order reduced density operators (Z.ROOs), with b+/b- being the usual fermion 
creation/annihilation operators. The operator h(l .2)  is defined as 

(6) 

where h~ and hz describe, respectively, the one  and two-body interactions. We assume 
that h ( l . 2 )  = h(2, 1) and that h( l ,2)  is Hermitian. Alternatively, Hamiltonian (3) may be 
expressed in terms of the quantities adapted to the permutation group S Z  of two particles: 

I 

N - 1  h( l ,2 )  = - N I (  1) + h1(2)1+ hz(L 2) 

K 
H = 1 2 E( [+1R(k JI [+I E{E J I  + [-IR(k J I  [-1Eik) 11 

l'lRjf = h((ijlk1) i ( i l lk j ) )  

(7) 
i j k l  

where 

(8) 

This formulation may seem more complex than its equivalent given by (3). Nevertheless 
it has some significant advantages when analysing the structure of the final formulae. 
Developing the formalism within this framework goes beyond our present pmpose. It 
will be discussed in a separate paper. 

The integds in Sz-adapted basis and the density operators are either symmetric or 
antisymmetric in the indices of the same level, i.e. 

Besides, since h( l .2)  is Hermitian 

however, Ejr are, in general, non-Hermitian and 

[*]E$ - ([*]E/:)+. 
J I  - 

Similarly, due to the Hermiticity of h(l .2)  

[ i j lk l )  = ( j i l l k )  

however 

zEjf = ('E/:)+ # 'E/:, 

The power of the Hamiltonian reads 
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where 

and 

If the Hamiltonian is expressed in terms of Sz-adapted quantities (equation (7)). then 

Here [SI is a sequence composed of n symbols + 01 - and the sum runs over all 2” such 
sequences (for example, [SI = ++, +-, -+, -- in the case of n = 2), 

and 

is defined in an analogous way. 
The basis in KA is formed by a set of spin-adapted and antisymmenic products of the 

orbitals. Then, a basis vector may be expressed as (Ruedenberg 1971, Kanuowski 1973, 
Duch and Kawowski 1985) 

ISMI; A) = i [ I S M l ) l A ) ]  (19) 

where 2 is the antisymmetrizer, ISM[) is an eigenvector of the total spin (S2 and S,) 
operators, 1 numbers different spin coupling schemes and l i )  corresponds to a product of 
orbitals. The product A is referred to as the orbital confrguration. An orbital configuration 
is characterized by the,corresponding occupntion numbers n; =-0,1,2, (i = 1,2,. . . , k) ,  
of the Orbitals. If an orbital does not appear in the product, then it is referred to as an empty 
or a virnral orbital and the corresponding occupation number is zero. If nf. = 1 (singly 
occupied orbitals or singles), then the orbital a; appears once in the product. If n; = ~ 2  
(doubly occupied orbitals or doubles), then appears twice in the product. Due to the 
Pauli principle (antisymmeaization), contigurations with n; > 2 are not allowed. 

With this choice of the basis, a diagonal matrix element of any product of the 2-ixrx3s 
vanishes unless the sets of all upper and lower indices in the z-RDOS are the same. Therefore 
the expectation value of H” may be written as, 

) (20) 
ilkl, izkz. ... , inkn I (  l K K  i lkl ,  izkz. . . . , inkn 

= 2. { P[i lk l ,  i 2 k 2 . .  . . , ink,] P[ilkl ,  i2k2,. . . , ink,,] (9 ( I r )  PES% 

where the last sum is extended over all (Zn)! permutations of the lower indices. 
Equation (20) is rather complicated and, in a general case, not easy to handle. In particular, 
the number of different type8 of the expectation values of the products of Z-RDOS is quite 
large. 

-. 
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3. ' h C W  Of products Of 2-RDOS 

The problem of calculating traces of H" over 'HA(N,  K, S, M) appears to be simpler than 
that of calculating mamix elements. First, the trace of a product is invariant with respect to 
any cyclic permutation of the operators forming the product. Second, the trace is invariant 
with respect to a unitary transformation of the orbitals. In particular, it does not depend upon 
their numbering (Karwowski et d 1986). Since the numbering of the orbitals is irrelevant, 
we assume that the indices in the upper row of the product of 2 - m s  are always in ascending 
order. Then the traces of the 2-RDO products depend only on relations between the indices 
but not on their specific values. There are two different kinds of relations between the 
indices. The 6rst one is concemed with equalities between the indices located in different 
rows, the second one with equalities between the indices located in the same row. 

3.1. The case when all indices are differenr 

Let us assume that the indices are all different. Then there are (2n)! different traces of the 
products of p-RWS, each of them labelled by a permutation P E Sh: 

)> . ((79) ED(( P[l 2.3 4, . . . , 2 n -  12nI 
1 2 , 3  4, . . . , 2 n  - 1 2 n  

In order to divide the (2n)! products into classes of equivalence, each of them containing 
products having the same trace, let us recall the definition of the pth-order density operator 
(Planelles er al 1990): 

As has been proved by Planelles er af (1990), two density operators 

and ,,,) (P, 8 E S,) 

have the same trace if P and Q belong to the same class of S, i.e. if they have the same 
cycle smcture. Product (17) of the primitive 2-mos, using the generalized Wick theorem 
(Kutzelnigg 1985, Planelles er a1 1990), may be expressed in terms of sums of RDos of 
orders Zn, 2n - 1 , .  . .. Hence, two traces ((P)) and ((e)) defined by equation (21) are the 
same if the Wick expansions of 

( P[1 2,3 4, . . . ,2n - 1 2n3 ) 1 2,3 4 . .  . . ,2n - 1 2n 

are of the same form, i.e. they consist of the same number of p-RDos possessing the same 
cycle smcture. 

To facilitate an easy classscation of the Wick expansions let us introduce the concept 
of upper links between the indices involved in a cycle. Let us consider as an example 
'Ikt2Ei; 'E;: 'E::]. The comspondmg permutation is (1325)(46)t. We denote 

) 12.34 ,  ..., 2n-12n 
and ( Qrl2.34, ..., Zn-12nI 

(23) 2 122 342 56 - 2 122 342 56 Tr[ 4 5  E,,] = (( 4 5  E, E d )  = (((1 3 2 5)(4 6))) 

t When expressing a pnnutation as a product of cycles we adopt a mnvention that in each cycle the lowest index 
stands at the first position and that the cycles m the product are written in a descending order of their lengths. 
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where m means that the 2-RW in which m is a subscripr stands to the Left of a 2-RDO in 
which m is a superscript. An arc drawn between the lower and the upper index marked by 
a dot links two different 2-RDOs and ascends from the bottom row to the top row. Then, 
the dots indicate those creation operators (the top row indices) which in 

) ( P[1 2 , 3  4,. . . ,2n - 1 2nl 
1 2,3 4,. . . , 2n  - 1 2 n  

stand to the righc of the corresponding annihilators (the bottom row indices). 
A very simple rule allows marking of the upper links in a pemutation: if in a cycle two 

adjacent indices are associated with two differht ZRms h d  if the Ijrst index is smaller 
than the second, then the second index should be supplied with a dot. 

Consulting the algorithm for the generalized Wick theorem (Kutzelnigg 1985, Planelles 
er a1 1990) one can see that the following theorem concerning traces of products of 2 - m ~  
is fulfilled. 

Theorem 1 .  If two permutations P and Q belong to the same class of the pertinent 
permutation group and if in ((P)) and in ((e)) the number of !he upper links in the 
corresponding cycles is the same, then ((P)) = ((GI)). 

As a consequence of this theorem it is convenient to denote a nace of a product of 
2-RDos by indicating only the cyclic structure of the permutation and the number of the 
upper links in each cycle. Then the trace from equation (23) is denoted as 

(((1 3 2 5)(4 6))) = ((4221)) (24) 

where 4 and 2 refer to the Lengths of the corresponding cycles (class E421 of s6)  and the 
subscripts correspond to the numbers of the upper links. In om example 

((4221)) = (((1 3 2 5)(4 6))) = (((1 5 2 3)(4 6))) 
= (((1 4 2 5 x 3  6))) = (((1 5 2 4)(3 6))) 
= (((1 4 3 5)(2 6))) = (((1 3 4 5)(2 6))) 

= (((1 3 2 6)(4 5))) = (((1 6 2 3)(4 5)))' 

= (((I 4 2 6 x 3  5))) = (((I 6 2 4 x 3  5))j 

= (((1 4 3 6)(Z 5))) = (((1 3 4 6)(2 5))) 

= (((1 5 3 6)(2 4))) = (((I 5 2 6)(3 4))). 

= (((1 6 3 5)(2 4))) = ~(((1 6 2~5) (3  4))) 

A simple formulation of the generalized Wick theorem for traces of products of the ZRDos, 
based on the notion of the upper links is given in appendix 1. 

3.2. The case of repeated indices 

Let us consider the case when at least one of the indices in thKproduct of 2-RDOS 
(equation (17)) appears more than once. We shall prove that the trace of such a product 
may be expressed as a sum of traces of products of 2 - m s  in which all indices are different. 
To this aim we formulate two lemmas concerning RDOS of an arbirrary Order. 



3890 F Rajadell er ai 

Lemma 1. If S, c S,, R E S,, P E S, and r > 2, then 

where 2 denotes an arbitrary shing of p indices. 

Proof of this lemma is given in appendix 2. 

Lemma 2. If X is a string of ( p  - q)  arbitrary 
indices, then 

( (%tYX)) )  = 0 

for an arbiiaary P E S, and q > 2. 

&es an Y is a string of q identical 

The proof is a direct consequence of the Pauli principle: if 4 > 2, then 

P E Y X  p(yx)ISM[; A) 0. 

Combining equations (25) and (26) we obtain a theorem concerning repeated indices in 
traces of the pth order RDOS: 

Theorem 2. Let X be a shing of ( p  - q)  arbinary indices, Y a shing of q identical indices 
and 2 a shing of p indices in which the last p - q positions are the same as in X, while 
the first q positions are occupied by indices which are all different and which are different 
from any of the indices of X. Let P E S, and 77. E Gq, where Gq is a permutation group 
isomorphic to S, but containing operators which act on the 6rst q indices of 2 only. Then, 

This is obvious for q > 2, from the above lemmas (both sides of the equation are zero). The 
equality is also me for the case q = 2 (cf equation (22) in PIanelles er a/ 1991), although 
in this case it is different from zero. Thus, (27) is valid for any 4. 

where P, Q E S,, P’ = C ’ P Q  and A is an arbitrary shing of 
p indices, theorem 2 may be formulaled in a more general way. For an arbiiaary P E S, ,  
Q E S p  and P’ = Q-’PQ we may rewrite (27) as 

Since = 

Then, in (28) string Q(Y X) contains repeated indices distributed in an arbitrary way (dehed 
by the permutation e). 

A similar relation is valid for arbitrary prcducts of p-mos, in particular for products 
of 2-RDOs. Using the same symbols as in (28) we have 
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It is worthwhile to note that the present results generalize the ones expressed by Planelles 

The 1 s t  equation may be proved by applying to both  its^ sides the generalized Wick 
er a[ (1991) in equations (22)-(26). 

theorem (see appendix 1). Let us note, that if 

1 12 .3  4, .... 2n - 1 2n (i p q , r s ,  ..., u v  

is a product of n 2-RDos, then the application of the Wick theorem will produce a combination 
of “ E ,  2n-1 E ,  >-’E,. . ., with the corresponding strings of indices containing, respectively, 
all the indices of (YX) and (Z), one index less, two indices less,. . _. Then, the RHS of (29) 
is a combination of expressions 

with f = 2n, 2n - 1.2n - 2, . . ., s = q .  q - 1. . . . and 7“’ being modified accordingly. The 
string of indices Z ,  contains f indices out of which t-s belong to X. 

According to lemma 1. W,, = 0 ifs > 2. Similarly, the LHS of (29) is a combination 
of expressions 

where Y, and Xt-s are strings containing, respectively, s and r-s indices, and Q” being 
modified accordingly. In this case, due to lemma 2, USt = 0 if s > 2. 

As one can check, the terms which remain in both sides of (29) correspond to each 
other in the sense of (28) and appear with the same coefficients. Instead of a general 
demonsmtion of this fact (which is rather tedious), we shall illustrate the procedure using 
an example. According to (29) 

where, for clarity, the indices corresponding to string X are marked by a tilde. The 
permutations R act only on the indices which are not marked. Applying to the RHS of 
(30) the procedure described we get 

In the calculation some identities like, for example 
4 1245 4 WIZ451 4 1245 

(( ER[S142])) = ~c (( ‘SI42 )) = (( ER[1542])) 
RE% R E S %  RES* 

are useful. Developing the LHS, we get two non-vanishing terms 

LHS = 2((4~,’;,4: + 3~:;:)). 

Applying (29) we have 
4 1145 4 1245 4 1245 

3 I14 3 124 3 124 

(( ‘1541)) = (( E1542)) + (( %41)) 

(( E1i4)) = (( E124)) + (( E214)) 

i.e. same as in (31). 



3892 F Rajadell el a1 

3.3. Summary 
Due to equation (29) only maces of products of ZRDOS with all indices different are needed. 
In the case of all indices different, theorem 1 allows us to reduce the number of different 
traces very substantially. A list of all different t~aces of products of 2-RDOS which may 
appear when calculating traces of H ,  H 2  and H3 are given in table 1. As we see, in these 
cases there are, respectively, 2, 8, and 30 different @aces. 

Table 1. List of all different t m s  of products of the second order densiry operators appearing 
in expressions for Tr(H^), n c 4. Each mce is identified by the class of Sz. with appropriately 
distributed upper links. If there are no upper l i s  in a cycle, &e comespanding index is omitted. 

4. General expression for traces of H" 

The uaces of H",  according to equation (ZO), may be expressed as 

i l k l ,  i2k2,. . . , ink. K K  1 2,3 4 , .  _ _  .2n - 1 2n 
Tr(Hn)= $ (('PI1 2,3 4, ..., 2n - 1 &I)) GG [ ' P h k i , i 2 k ~ ,  . . . , ink,,l 

PcSr .. . .  
aU indice diifemt 

+ [terms with repeated indices]. (33) 

The terms appearing in (33), depending upon the number of repeated indices, may be 
labelled by parlitions of 2n. For example, partition [lk] corresponds to the term with all 
indices different (written explicitly in (33)), partition [Z 12"-2] corresponds to the case of 
two repeated indices, 12' 1"-41 to two (different) pais  of repeated indices, [4 12"43 to 
four repeated indices, and [Zn] to the case when all indices are the same. 

The number of different terms associated with each partition is equal to the number of 
compositions associated with this partition. Thus, it is equal to c ) ( 2 n  - k ) !  for [k lk-'], 
(k)( )(2n - 1 - k)!  for [kl lk-'-'I, and so on. The permutations 'P, in the cases 
of repeated indices, run over appropriate subgroups of Sk (the identical indices are not 
permuted between themselves). On the other hand, due to (29), each term with an index 
repeated q times contributes to q! terms, each of them associated with a m e  of a product 
of n 2-RDOs without repeated indices. The global effect results in a compression of (33) 
into a compact form: 

2n Zn-k 
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where all indices are included in the sums over ( i )  and ( k ) .  Equation (34) is the most 
compact and the most general expression for the mce of a power of an operator. 

The sums of integrals appearing in (34) are, for a given P, invariant with respect to 
unitary Uansformations of the orbital basis. Therefore, similarly to the case of the !TaCes of 
the products of ZRDOS, they depend upon relative arrangement of the indices (i.e. on the 
permutation P) only. We denote 

In consequence, equation (34) may be rewrinen in more condensed form as 

Equation (36) separates the effects which depend upon the specific form of the 
interactions in the system and on the properties of the one-electron (orbital) space from 
the ones which depend upon the number of electrons and the total spint. 

The coefficients ((P)) describe the way in which one- and two-body effecc; contained in 
((7’)). which we refer to as the inreractionfaaors, inhence the system when the number Of 
particles or their resultant spin changes. They are referred to as the propagation coefficients 
and have been subject of extensive studies in several contexts (cf Mon and French 1975, 
Brody er a1 1981, Numura 1972, 1974, 1985, 1986). 

5. Basic properties of the interaction t e r m  and the Hamiltonian moments 

In the case of n = 1, equation (36) contains just two terms: 

The corresponding interaction factors 

are referred to as the Coulomb and the exchange contributions, respectively (Kanvows~ 
and Bancewicz 1987) and are expressed as 

t In fact, the interaction and the orbital-space-dependent part ([PI) depends, in a d e r  trivial way, upon the 
number of electrons through equation (6). ’This dependence can easily be eliminated by explicitly s e p t i n g  
the generalized two-electmn integrals into one- and two-eledron ones. This step would. however, introduce 
unnecessary complications to the equations and we shall not do it at this sfage. 
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Equations (38) and (39) are interpreted as traces of the Coulomb (JPq) and exchange ( I C p 4 )  
manices defined over the entire one-electron space: 

K 

Jpq = C(pqIkk1 (40) 
k=l 

and 
Y 

In the majority of applications we are interested in moments of the spectral density 
distributions rather than in the mces. The first moment is, in our case, the average energy 

The nth moment of the spectral density disnibution is defined as 

(43) 
1 
D 

M - - Tr((H - I?’)”). 

If the interaction factors have correct asymptotic behaviour then the moments (contrary to 
the traces) converge to finite limits if K + ca. 

Equation (43) may be Muen alternatively as 
n 1 

Mn = ,Tr(H”) +C(-I)’ 
k = l  

Hence, except for the terms appearing in M,,, Tr(H”) contains contributions from mces of 
H X  with k = 0.1.2, .  . . , n - 1. In order to simplify the algebra, it is convenient to redefine 
H by incorporating 0 into it, i.e. by taking k = H - H. Then 

(45) 
1 

n -  D 
M --TI($). 

Formally this can be achieved by just setting H = 0 or, equivalently, 

Tr(,7) = Tr(IC) = 0. (46) 

The interaction factors containing Tr (3) or Tr (IC) may be easily identified. If the elements 
of columns 2i - 1, 2i (i = 1,2, .  . . , n) are not affected by the permutation P, then these 
columns correspond to Tr (3); if P leaves the bottom row elements of these columns 
transposed, then these columns correspond to -(IC). For example 

In general, if the permutation P does not affect r integrals (r pairs of columns 
(2i - 1,2i)) and transposes indices in I integrals, then the corresponding interaction factor 
is propodonal to Tr(J7)’ Tr(IC)‘. 
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6. Classi6catbn of the interaction terms 

It is convenient to associate with each interaction factor an index i = n - r - f which is 
equal to the number of the two-elecmn integrals being 'coupled' by the permutation P. 
From our previous considerations (equations (44 j(46)) one concludes that only terms with 
j = n are relevant for our discussion. However, for completeness. in some cases all terms 
are considered. Then, ((P))j  denotes an interaction factor with j integrals coupled. If the 
index is omitted, it is assumed that j = n. 

As we have demonstrated in section 3, the symmetry properties of the propagation 
coefficients allow us to divide all the coefficients onto equivalence classes, so that the 
coefficients belonging to each class are equal to each other. An equivalence class of the 
propagation coefficients may be labelled by two indices: one corresponding to the partition 
of 2n and the other one to the number of the upper links in each of the cycles detined by 
this partition. 

Symmetry propeaies of the interaction factors are similar but not identical to those of 
the propagation coefficients. In particular no counterpart of the Wick reorem exist for the 
interaction factors. On the other hand, no symmetry element of the propagation coefficients 
exists which would correspond to the one resulting from equation (13) for the interaction 
factors. It appears that the index determining the number of integrals coupled by P and the 
two indices identifying the equivalence classes of the propagation coefficients (the class of 
Sk to which P belongs and the number of upper links in each cycle) are not sufficient to 
identify the equivalence classes of the interaction factors. For example 

(48) 2 122 3 4 2  56 2 122 342 56 (( E31 E56 E42)) = (( E35 4 6  Fa ).) = ((63)). 
The corresponding interaction factors are. 

and 

The number of integrals coupled by both permutations is 3, but evidently A # B .  
A complete classification of the interaction factors requires an introduction of several 

labels which allow an identification of non-equivalent classes. As an example of such a 
label we introduce as a classification index the number of lower links in a cycle. We attach 
a lower link to an index s in a cycle if the index is associated with two different integrals 
and if in the bottom row of the synlbol 

1) 12.34 ,  ..., 2n-12n (I P[l 2, 3 4, . . . ,2n - 1 2n] 

it stands at a position q > s. An index with a lower link is marked as s. An arc which 
connects the indices with lower links in the corresponding two-row symbols descends from 
the upper to the lower row. For example, 

A =(( 3 '" 1 , 5 6 . 4 2  4 * 5  ))= ( ( (I  3 5 4 6 2 ) ~ ~  

B =_ (( 3 5 , 2 6 , 4  2, 4* 1 I) = (((! 3 2 5 4 6)p3 
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and we write 

A = ({63,21)3 B = (163,31)3. (52) 

Note that a lower link is attached to an index if the preceding index in the same cycle is 
larger and belongs to another 2-RDO. When applying this rule one should remember that the 
last index of a cycle precedes the 6 r s t  one. 

In general, if P belongs to a class C" = [c(l)cP) . . . d')] of S b  composed of f cycles, 
we denote 

(53) (1) (2) 0) . ((Pi '))j  ({C&,,~C~~,~. . . C&,,I)~ 

where c:!~ means that there are k ,  upper links and I,,, lower links in the cycle c@'". The 
indices k, 1 stand, respectively, for the sets #,,,E=, and {lmE=l. The index i identifies the 
class of S a  and j denotes the number of integrals coupled by the permutation. 

(( P[l 2, 3 4. _ _  .,2n - 12nJ I)=(Ip- ' 1 2 ,  [ 34, ..., 2n-l2n] 
i.e. the interactions are invariant with respect to transposition of the upper and the lower 
row in the corresponding symbol. For example 

As results from equation (13) 

(54) 1) 12, 3 4, . . . ,2n-  1 2n 12.  34, . . . ,2n- 1 2n 

This operation transforms al l  the upper links into the lower ones and vice versa. Hence 

(P$'I)~ = ( {@)) j .  (56) 

If the permutation P consists of several cycles and different groups of cycles affect 
different groups of integrals, then the same symmehy applies to each of groups of cycles. 
For example 

n(3x2) Tr(3'K) = (((! z 6 4 3)(7 iz 9 8)))6 

= (((1 2 6 4 3)(7 8 9 li))), 
= (((1 14 6 2x7 iz  9 8))h 
= (((1 3 4 6 Z)(y 8 9 iz))j6. (57) 

The symmetry of the interaction factors resulting from equation (13) and described by 
equations (54>-(57) is referred to as the reflection symmefq. In general, this symmehy does 
not hold for the propagation coefficients (cf equation (14)). The propagation coefficients 
for a given cycle structure of P depend only on the number of the upper links in each 
cycle. Therefore we can easily combine with each interaction term the corresponding 
propagation coefficients. For example, the contribution to Tr(H3) due to the interaction 
term A (equations (51) and (52)) is proportional to ((632])3(((63)) + ((62)))  the one due to B 
is (I63 3])3((63)). In the case of the conhibution to T r ( H 6 )  due to T r ( 3 K 2 )  Tr(J2K) we have 
(equation (57)) ((5124121)6(((5141))+((5142)) + ((5~41))+ ((52%))). In general, a conhibution 
to Tr(H") due to terms associated with ( { P f ] ) j  may be written as ( (Pi)]) j  ((pi))), where 
((pi))) stands for an appropriate sum of the propagation coefficients. The bar means that 
only those cycles which affect different groups of integrals are considered when forming 
the sum. 
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7. The final formulae for traces of H" 

Equation (36) may be rewritten in the following form 

j i kl 

where the prime means that sum extends only over those sets of the upper and lower links 
which give non-equivalent interaction terms. The integers nf;j are equal to the number 
of elements in the corresponding classes of equivalence of the interaction factors. They 
are referred IO as the weights of the corresponding permutations. They fu161 several useful 
relations, as 

where v i ! j  is equal to the number of terms in the sum (('@}) and g(') is the number of 
permutations in the class'C?of Sh. 

The value of n f j  may be obtained just by counting how many permutations belonging 
to a given class of Sh and coupling j integrals have a given distribution of the upper and 
lower Links. The following procedure may simplify the counting: 

(1) Let us denote f,, m = 1.2, . . . , n ,  any of two indices 2m - 1, 2m. 
(2) Let us List all sets of permutations with given i , ' j ,  k. and 1 and with alJ possible 

distributions of the symbols f,,,. If, for example, we are concerned with the permutation 
belonging to class [51 of Ss, coupling three integrals, and having one' upper and two 
lower links, then five types of the sets of these permutations are possible: (&, I 1  h fi IZ), 

(!I f l  h 13 h), (11 h fi 12 h), ( t l  k 13 fi !I), (!I k 13 fi 12). 
(3) The number of permutations in each of those sets (dimensions of the sets) may be 

obtained using several simple rules: 
put the cycles in the descending order of their length and, if they are of the same 

length, in the lexical order of the indices; 
to the 6rst cycle assign an index (3 - M)Zm-' where m is the number of different 

I,,, in cycle and M is the number of times t1 it appears in the cycle (i.e. either M = 1 or 

to the consecutive cycles assign indices (3-M')Zm'-' where M' is the total number of 
times the first element of the c e n t  cycle has appeared in the current and in the preceding 
cycles and m' is the number of t ,  which appear in the current cycle for the first time (they 
are not present in the preceding cycles); 

if there are two cycles of identical type (as e.g. (cl iz i z  k)), then the second 
cycle index is 112. 

the number of permutations in each set is equal to the product of all thecycle indices. 
(4) The value of n f i j  is equal to the sum of the dimensions of all the sets. 
As an example, general expressions for Tr(Hz) and Tr(H3) are given here. In the case 

M = 2); 

of H2, 

W H 2 )  = (IlOa))l((lO)) + Z({&O)h((%)) + (I&02aO~)l((2020)) 

+ 2([422))2((42)) + 2((211211));((2121)) + 4((211))2((21)) 
+ 8(1311))2((31)) + 4({411]h((41)).  (61) 
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The contributions with j = 1 vanish when calculating M 2 ( H ) .  The remaining five terms 
comes~ond respectively. to C,,,,(~qlrsl(qr~s~]. C,,, tpqlrs)(qp~sr),  n(P), ~ ( z x )  
and Tr(lc2). This result may be compared with equarions (47) and (49) of the work by 
Kanvowski and Bancewicz (1987). 

For H 3  we omit the terms coupling less than three integrals and, for simplicity, skip 
the subscript ‘3’ in the interactions terms. Then 

In this case all the sums of the propagation coefficients associated with a given interaction 
factor contain two terms, since 

and 

( ( f iZ1))  = ((4)) + ((m3). (64) 

An explicit derivation of expressions for higher powers of H is rather straightfonvard 
However, one should remember that the number of different terms in these expressions 
grows very fast with n. Therefore using symbolic program languages l i e  MATHEMATICA, 
REDUCE or MAPLE is most appropriate in these cases. 
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Appendix 1. Generalied Wick theorem for traces of products of 2-RDOS 

A uace of a product of n second-order density operators containing m upper links 
may be expressed as a linear combination of traces of the density ope%ors of orders 
2n, 2n - 1,. . , .2n - m. The combination consists of traces of all density operators which 
may be obtained by formally removing indices with the upper links in all possible ways. 
for example 

(65) 
(0 indices removed) 

+((U 25)(46)))sE+(((l 3 2)(46)))~~+(((1 3 2 5 ) ) ) ~ ~  (1 index removed) 

+ (((1 2 5 ~ ' ~  + (((1 3 21))'~ + (((1 2x4 6 m E  (2 indices removed) 

+(((I 2 h .  (3 indices removed) 

2 122 3 4 2  56 
(( E26 El4)) E (((1 3 2 5 )  (4 6))) 

= ~(((13 2 5)(4 6 ) ) ) ~  

In this example ( ( P ) ) q ~  means the m e  of the qth-order reduced density opera" 

theorem for products of the density opemtors (Kutzelnigg 1985, Planelles et a1 1990). 
The thheorem may be obtained in a rather straightforward way from the generalized Wick 

Appendix 2. Proof of lemma 1 

Lemma 1 says that for an arbi!mry string Z of p indices 

if P E S, and r > 2. According to equation (32) of Planelles et a1 (1990) 

where P, Q E S,, is a spin-adapted creation operator of a p-particle state (for 
details see PlaneUes et a1 1990, Planelles and Karwowski 1992). In equation (67) r(S) is 
an irreducible representation of S, corresponding to the spin S, i.e. to a Young diagram 
with zt most two rows. 

From equation (67) we have that 

where ?(S) is a representation conjugate to r(S), i.e. it corresponds to a Young diagram 
with at most two columns. Let us choose the basis for the representation F(S) in such a 
way that for Q E S, the corresponding representation matrices are direct sums of manices 
corresponding to S, c S, (Hamermesh 1964), 
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where y is an irreducible representation of S, and nY = 0, 1.2, . . . says how many times 
y appears in ?. The sum over Q in (68) may be expressed as 

According to the orthogonality theorem 

if y is any but the totally symmehic representation of S,, i.e. if nl # 0. However if f' 
corresponds to a Young diagram with at least three rows and if r > 2 then, as results from 
the des of decomposition of representations of the symmehic group, nl  = 0. Therefore 

which proves the lemma. 
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